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Abstract

Understanding the structure and function of estuarine fish communities is essential

for guiding ecosystem-based management and restoration. This study investigated

long-term patterns in fish community composition, abundance, species richness and

estuarine use across 15 nearshore sites within three estuaries and the Isle of Wight,

located in the Solent, a large temperate estuarine system in southern England. Using

a 12-year dataset (2007–2018) of biannual seine net surveys, we applied traditional

community metrics alongside functional guild classifications and Fish Estuarine Asso-

ciation Scores (FEAS) to assess spatio-temporal variation and estuarine dependency.

A total of 55 species were recorded, with six species (Atherina presbyter, Dicen-

trarchus labrax, Pomatoschistus microps and Chelon auratus and the family Clupeidae)

accounting for 96% of individuals. Marine migrants and estuarine residents domi-

nated the assemblage, indicating strong connectivity between estuarine and coastal

habitats. While fish abundance declined significantly over time, species richness and

community composition varied across seasons, tidal states and spatial scales. Sites

and catchments differed markedly in FEAS, with some areas supporting species more

dependent on estuarine habitats. These results highlight the importance of multisite,

seasonal monitoring and the value of trait-based metrics in identifying nursery habi-

tats and guiding restoration. The FEAS approach, applied retrospectively to historical

data, offers a practical framework for setting ecological baselines and prioritising

functionally important estuarine areas under real-world monitoring constraints.
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1 | INTRODUCTION

Coastal and estuarine systems are among the most productive habi-

tats in the marine environment (Kennish, 2023; Stamp et al., 2022).

These areas are essential fish habitats, providing critical nursery func-

tions, supporting the early life stages of many fish species and contrib-

uting to adult fish stocks and biomass (Nagelkerken et al., 2015; Nodo

et al., 2023). Within these systems, oyster reefs, seagrass meadows,
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mudflats and saltmarsh form a dynamic mosaic that provide shelter

and feeding opportunities for juvenile and nearshore fish (Beumer

et al., 2002; Sheaves, 2009a). These mosaics play a critical role by

enhancing the trophic energy flow both within and across habitat

boundaries (Sheaves, 2009b). Estuarine environments in particular

often support higher densities of juvenile fish compared to adjacent

nearshore marine areas (Nodo et al., 2023), highlighting the impor-

tance of understanding habitat–fish relationships to inform

ecosystem-based management strategies (Meynecke et al., 2008). As

such, the connectivity and diversity of estuarine habitats are key to

sustaining fish populations and their broader ecological function

(Nagelkerken et al., 2015; Nodo et al., 2023).

Despite their ecological importance, estuarine habitats are often

under-represented in fisheries research, which has traditionally

focused on offshore stocks and commercially targeted species (Moore

et al., 2024; Thurstan et al., 2010). This has created knowledge gaps in

nearshore systems, particularly concerning juvenile and estuarine-

resident fish assemblages and the environmental or spatial drivers of

their variability. Estuarine systems are naturally dynamic, influenced

by tidal cycles, seasonal patterns and longer-term climate influences

(Kinard et al., 2021; Lourenço et al., 2023; Whitfield, 2021). These

natural processes interact with a range anthropogenic pressures,

including habitat modification, pollution and urban development

(Ahmed & Tamim, 2025; Crain et al., 2009), making it difficult to dis-

tinguish natural variability from anthropogenic impacts. Spatial varia-

tion adds further complexity because different estuarine habits

support distinct assemblages and ecological function (Sheaves, 2009b;

Woodland et al., 2019).

As the ecological condition of many estuarine habitats continues

to decline under these combined pressures, restoration has become

an urgent global priority (Cloern et al., 2016; Oliveira et al., 2024;

Waltham et al., 2021). However, restoration efforts are often con-

strained by the difficulty of defining reference conditions. Restoration

commonly aims to recover historical ecological sates (SER, 2004), but

shifting baselines and limited long-term data make this challenging

(Estes et al., 2011; McClenachan et al., 2024; Pauly, 1995; Shackelford

et al., 2024). Over time, degraded states may be accepted as normal

(Alleway et al., 2023), resulting in lowered restoration targets (Hallett

et al., 2013). Long-term datasets are therefore key in tracking ecologi-

cal change and subsequently restoration progress (Magurran

et al., 2010). Whilst environmental factors such as tidal flow, salinity,

temperature and oxygen all shape fish communities (Arevalo

et al., 2023; González-Sansón et al., 2022; Hagan & Able, 2003;

Huntsman et al., 2023; Lai et al., 2024), such data are often lacking in

historical records, which can reduce the ability to attribute changes to

environmental drivers.

To address this, functional ecological metrics offer a practical

means of assessing fish community structure and estuarine use across

spatial and temporal scales in the absence of environmental data. Two

complementary approaches are the Estuarine Use Functional Guild

(EUFG) classification and the Fish Estuary Association Score (FEAS).

EUFG groups species based on life-history strategies and patterns of

estuarine use (Elliott et al., 2007), whilst FEAS assigns each species a

score from 1 to 5, reflecting its degree of estuarine dependency

(Froese & Pauly, 2019; Harrison & Whitfield, 2021). As these are trait-

based metrics, they can be retrospectively applied to historical fish

assemblage data to infer estuarine function. Aggregated FEAS scores

enable comparisons across years, sites or catchments, offering insights

into spatial variation in ecological value and functional importance.

Together with traditional community metrics such as abundance and

species richness, these tools provide a robust framework for evaluat-

ing ecological change, restoration targets and habitat value over time.

The Solent, a large temperate estuarine system in southern

England, presents a valuable case study for investigating long-term

changes in nearshore fish assemblages. This study uses a 12-year

dataset (2007–2018) of seine net surveys conducted at 15 sites

across four catchments to assess spatio-temporal trends in fish abun-

dance, species richness, functional guild composition and estuarine

dependency (via FEAS). By applying FEAS metrics to historical com-

munity data, we can infer the estuarine functional value of different

habitats and quantify variation in estuarine dependency. Importantly,

this analysis establishes an ecological baseline for the Solent against

which the current condition and functional state of the system can be

assessed. This baseline supports ongoing restoration initiatives and

provides a foundation for future monitoring and management recom-

mendations in this highly urbanised estuary. Moreover, the approach

developed here offers a transferable framework for assessing ecologi-

cal function and change in other large estuarine systems where long-

term fish community data are available.

2 | MATERIALS AND METHODS

2.1 | Ethics statement

The care and use of fish complied with UK animal welfare laws and

guidelines. All sampling was conducted under non-invasive survey

protocols approved by the Environment Agency and relevant Inshore

Fisheries and Conservation Authorities. Fish were captured using

seine nets, identified, counted and released alive at the capture site.

No fish were harmed, held or killed for tissue sampling. Handling time

was minimised, fish were held in aerated recovery buckets and all

efforts were made to reduce stress and ensure animal welfare

throughout the study.

2.2 | Study location

The Solent, a strait between the north coast of the Isle of Wight and

the south coast of mainland Great Britain, is a sediment-dominated

system comprising 12 distinct estuaries and harbours. The local

topography, combined with the region's diurnal tidal fluctuation, cre-

ates a double high-water phenomenon. The Solent's hydrology is

characterised by a low-energy, shallow, macro-tidal system with a

mean tidal range of 3.2 m (Iriarte & Purdie, 2004). The Solent has

a variety of essential fish habitats including natural harbours,
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saltmarshes, seagrass, oyster reefs, kelp, other mixed macrophytes

and rocky ledges (Watson, 2020). These habitats all play a key role in

fish behaviour and movement. This study utilises 15 survey sites

within four major catchments: Southampton Water, Langstone Har-

bour, the Isle of Wight and Chichester Harbour (Figure 1).

2.3 | Survey methodology

Surveys were conducted at 15 sites across the Solent, covering multi-

ple catchments with biannual monitoring in summer (June) and

autumn (September–October) from 2007 to 2018. A total of 436 hauls

were completed, 214 in summer and 222 in autumn. Sampling took

place during daylight hours (6 a.m.–5 p.m.) at slack high or low tide,

depending on site accessibility.

At each site, two replicate hauls were performed using a

43 � 4 m seine net with 6.5-mm mesh in the centre panel and 14-mm

mesh in the wings. The net was deployed either from the shore or

using a small tender, depending on access, and hauled ashore by a

team of six to 10 people. Captured fish were placed immediately into

aerated 40-L buckets of seawater, identified to species level, and

counted. Common species were processed and released on-site; cryp-

tic or unidentified individuals were photographed for later identifica-

tion. All fish were placed in recovery buckets prior to being returned

to the site.

2.4 | Dataset generation and collation

Datasets were compiled from five organisations: The Environment

Agency (EA), the Sussex Inshore Fisheries and Conservation Authority

(SxIFCA), Langstone Harbour Board (LHB), the Southern Inshore Fish-

eries and Conservation Authority (SIFCA), and Chichester Harbour

Conservancy (CHC). EA surveys originally included fyke and beam

trawl methods designed to support Water Framework Directive

(WFD) assessments. However, to ensure consistency across all data

sources, only seine net data were used in this study because this was

the common method employed by all organisations. Data were then

F IGURE 1 Survey sites are grouped by catchment and colour-coded accordingly: green, Chichester Harbour; blue, Isle of Wight; red,
Langstone Harbour; yellow, Southampton Water. Site names are labelled from left to right: RY, River Yar; BW, Bedhampton Wharf; CB, Calshot
Beach; CH, Cracknore hard; CO, Copperas; CP, Cobnor Point; EP, Eastney Point; GB, Goatee beach; IB, Itchen Bridge; MF, Manor Farm Jetty; PL,
Pilsey; SB, Swanwick Bend; SS, Sword Sands; WB, Winner Bank; WS, Weston Shore. Data represent the locations of biannual seine net surveys
between 2007 and 2018.
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organised by site, catchment, year, season and tidal state, providing

broad spatial and temporal coverage of nearshore fish communities

across the Solent.

Species names were updated using the World Register of Marine

Species (WoRMS), and identifications were cross-checked with Fish-

Base (Froese & Pauly, 2019). Sprratus sprattus (Linnaeus, 1758), Clupea

harengus (Linnaeus, 1758) and Sardina pilchardus (Walbaum, 1792), were

grouped under the family Clupeidae due to difficulties identifying juve-

nile individuals to species level in the field. Their FEAS scores and guild

classifications were based on mean values across the three species.

Each species was assigned to an Estuarine Use Functional Guild

(EUFG) based on its typical frequency and purpose of estuarine use

following the classification frameworks of Elliott et al. (2007) and

Franco et al. (2008). EUFG categories included estuarine species (ES),

marine migrants (MM), marine stragglers (MS), anadromous (AN),

catadromous (CA) and freshwater species (FS). Fish Estuary Associa-

tion Scores (FEAS) were assigned using the FEAS database, which

contains estuarine association scores for some 6300 fish species

(Harrison & Whitfield, 2021; available at https://doi.mba.ac.uk/data/

1439). These species-level scores range from 1.0 to 5.0 and quantify

the degree of reliance on estuarine environments (with the full spec-

trum illustrated in Figure 2). Each species in our dataset was directly

matched with its corresponding FEAS value in the database.

The final dataset includes site, catchment, year, season, tidal

state, haul ID, species name, family, EUFG, FEAS and count. This

formed the basis for assessing spatial and temporal variation in fish

populations and community composition across the Solent. Table 1

details catchment, site name, years surveyed and tidal state.

2.5 | Data analysis

To model temporal trends in fish abundance, a negative binomial gen-

eralised linear mixed model (GLMM) was applied to raw count data,

with year as a fixed effect and season, haul and site as random effects.

This approach accounted for overdispersion and was selected based

on model fit. All variables were checked for normality and standar-

dised prior to analysis. To assess variation in species composition

across temporal and spatial factors, including year, season, tidal state,

site and catchment, a permutational multivariate analysis of variance

(PERMANOVA; Anderson, 2017) was conducted using a Bray–Curtis

dissimilarity matrix on square root-transformed data with 999 permu-

tations. Where significant differences were detected, post hoc tests

were used: the Kruskal–Wallis test for comparisons involving more

than two groups and Mann–Whitney U tests for two-group compari-

sons. Dunn's tests with Bonferroni-adjusted p values were used for

pairwise contrasts where appropriate. Non-metric multidimensional

scaling (NMDS) based on Bray–Curtis similarity matrices were used to

visualise spatial and temporal patterns in fish community composition

across season, tidal state, site and catchment. All analyses were con-

ducted in R version 4.4.1 using the packages glmmTMB, dplyr,

ggplot2, vegan, FSA and tidyr.

3 | RESULTS

3.1 | Diversity and functional guilds

Between June 2007 and September 2018, a total of 55 fish species

and 141,917 individuals were recorded across 15 sites in the Solent.

Species richness per site ranged from 10 to 33 (mean ± SD 18.5 ± 7.1,

n = 15). Six dominant taxa, Clupeidae, Atherina presbyter Cuvier,

1829, Dicentrarchus labrax (Linnaeus, 1758), Pomatoschistus microps

(Krøyer, 1838), Pomatoschistus minutus (Pallas, 1770) and Chelon aura-

tus (Risso, 1810), accounted for 96% of all individuals. Among families,

Atherinidae was the most abundant (28.3%), followed by Clupeidae

(28.1%) and Moronidae (21.4%). Marine migrants (MM) dominated

the dataset overall, comprising 82.4% of the total count. Estuarine

F IGURE 2 The spectrum of estuarine use based on FEAS scores from Harrison and Whitfield (2021), with scores of 1 being associated with
freshwater species and scores of 5 associated with marine dependent species.
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residents (ES) accounted for 16.9%, with both guilds represented by

the six most abundant species. In contrast, marine stragglers (MS),

diadromous species (catadromous and anadromous) and freshwater

stragglers collectively contributed less than 1%. Guild composition is

summarised in Table S1. Several rarely encountered species including

Anguilla anguilla (Linnaeus, 1758) and Salmo trutta Linnaeus, 1758

were recorded in low numbers. Full species counts are presented in

Table S1. The mean Fish Estuary Association Score (E-FEAS) was

mean ± SD 3.95 ± 0.34 (n = 246), with the lowest score of 3.81 in

2007 and maximum of 4.07 in 2012.

3.2 | Temporal patterns in abundance, richness
and community composition

Fish abundance fluctuated significantly over the study period, begin-

ning at 7994 individuals in 2007, peaking at 24,167 in 2013 and

declining to 6157 by 2018. Survey coverage varied across years, with

five sites sampled in 2007–2009, 14 in 2012 and 2016, and 11 in

2018. The increase in abundance observed between 2010 and 2013

coincided with the expansion in site coverage. Species richness fol-

lowed a broadly similar pattern, rising from 14 species in 2007 to

37 in 2012, then dropping to 19 by 2018 (Figure 3), although survey

coverage did not decline at the same time.

NMDS revealed temporal and tidal variation in fish community

composition (stress = 0.148). Autumn and summer samples showed

partial separation along the NMDS axes, indicating seasonal variation

in assemblage structure. Tidal state also contributed to compositional

differences, with high-tide samples (circles) forming tighter clusters

and low-tide samples (triangles) more widely dispersed, suggesting

greater variability in community structure at low tide (Figure 4).

A negative binomial generalised linear mixed model revealed a

significant decline in fish abundance from 2007 to 2018, with a nega-

tive year coefficient (β = �0.098, p = 0.0114). PERMANOVA con-

firmed a significant effect of year on fish community composition

(df = 11, F = 1.94, p = 0.002). Pairwise comparisons revealed that

2008 differed significantly from multiple years, including 2010

(p = 0.026), 2011 (p = 0.019), 2012 (p = 0.029), 2013 (p = 0.038),

2014 (p = 0.033) and 2015 (p = 0.022). Additional significant differ-

ences were found between 2007 and both 2012 (p = 0.031) and

2015 (p = 0.036), as well as between 2010 and 2018 (p = 0.027),

and between 2012 and 2018 (p = 0.021). Most other year-to-year

comparisons were not significant.

Season also significantly influenced fish community composition

(PERMANOVA: df = 1, F = 8.09, p = 0.001), with a significant differ-

ence between autumn and summer communities (R2 = 0.120, F = 6.28,

p = 0.001). Species richness was significantly higher in autumn com-

pared to summer (mean difference = �0.94, t = �3.43, df = 101,

p = 0.0009), although no significant seasonal differences were

detected for average abundance (p = 0.123) or FEAS scores

(p = 0.327). Tidal state also had a significant effect on community com-

position (PERMANOVA: df = 1, F = 3.86, R2 = 0.057, p = 0.001). Spe-

cies richness was significantly higher at low tide compared to high tide

(W = 4178, p < 0.001), but no significant differences were observed

for abundance (p = 0.072) or FEAS scores (p = 0.059) (Figure 5).

3.3 | Spatial patterns in abundance, richness and
community composition

Fish community composition showed clear spatial variation across the

Solent over the 12-year study period. PERMANOVA analysis using

TABLE 1 Associated catchment, site name, the total number of surveys conducted, latitude and longitude of each site, number of survey
years and tidal state of each site.

Catchment Latitude Longitude Site name Tidal state Survey count Years surveyed

Chichester 50.8116 �0.8759 Cobnor point High 3 2010–2012

Isle of Wight 50.7025 �1.5013 River Yar High 3 2016–2018

Chichester 50.7870 �0.9268 Winner bank Low 5 2010–2012, 2016, 2018

Langstone 50.7968 �1.0316 Eastney point Low 6 2012–2017

Langstone 50.8097 �1.0169 Sword sands Low 6 2012–2017

Langstone 50.8438 �1.0011 Bedhampton High 6 2012–2017

Chichester 50.8001 �0.9065 Pilsey Low 7 2010–2014, 2016, 2018

Chichester 50.8101 �0.8238 Copperas High 8 2010–2014, 2016–2018

Southampton 50.9097 �1.4744 Goatee beach High 9 2010–2018

Southampton 50.8199 �1.3097 Calshot Lowa 9 2010–2018

Southampton 50.8934 �1.2895 Manor farm jetty Low 12 2007–2018

Southampton 50.8808 �1.2977 Swanwick bend Low 12 2007–2018

Southampton 50.9005 �1.3823 Itchen bridge High 12 2007–2018

Southampton 50.8827 �1.3678 Weston shore High 12 2007–2018

Southampton 50.8968 �1.4285 Cracknore hard High 12 2007–2018

aCalshot was surveyed at high tide in 2010 and 2011.
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Bray–Curtis dissimilarity revealed a significant effect of year (df = 11,

F = 7.61, p = 0.002), catchment (df = 3, F = 8.25, p = 0.001) and site

(df = 14, F = 6.93, p = 0.001), with NMDS ordination (stress = 0.201)

showing visible separation in community composition among catch-

ments (Figure 6).

At the catchment scale, Southampton Water (SW) recorded the

highest fish abundance (88,277 individuals) and species richness

(45 species), with contributions from six estuarine use functional

guilds. Chichester Harbour (CH) and Langstone Harbour (LH) also sup-

ported notable diversity, with four and three guilds respectively. The

Isle of Wight (IW) recorded the lowest abundance (1624 individuals)

and richness (11 species), with only two guilds represented. CH and

SW were the only catchments to support both anadromous and

catadromous species.

Species richness did not differ significantly between catchments

(χ2 = 7.17, df = 3, p = 0.666), but average abundance (χ2 = 170.52,

F IGURE 3 Temporal trends in fish community from 2007 to 2018 across all survey sites. (a) The average fish abundance per survey (mean
± SE) for each year. (b) Species richness, defined as the total number of taxa recorded annually. Note that the y axes in (a) and (b) differ.

F IGURE 4 Non-metric multidimensional scaling (NMDS) ordination plot showing seasonal variation in fish community composition across all

sites and years, based on Bray–Curtis dissimilarity of square root-transformed abundance data. Points represent survey year, coloured by season
(red, autumn; blue, summer) and shaped by tide type (circle, high tide; triangle, low tide).
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df = 3, p < 0.001) and FEAS scores (χ2 = 20.48, df = 3, p < 0.001) did.

(Figure 7). Post hoc Dunn's tests showed that Chichester Harbour

(CH) had significantly lower fish abundance than both Langstone Har-

bour (LH; p = 0.0007) and Southampton Water (SW; p = 0.007).

FEAS scores were significantly higher in CH and LH compared to SW

(p = 0.0025 and p = 0.004, respectively), while the Isle of Wight did

not differ significantly from any other catchment.

At the site level, Eastney Point (EP) had the highest fish abun-

dance (27,082 individuals), and Winner Bank (WB) the lowest (901).

Calshot recorded the greatest species richness (33 species) and five

guilds, while River Yar (RY) supported only two. Post hoc tests

showed significant variation in species richness between sites

(χ2 = 42.56, df = 14, p < 0.001), with EP and Pilsey (PL) significantly

higher than Weston Shore (WS) (p = 0.049 and p = 0.039, respec-

tively). Fish abundance also differed significantly across sites

(χ2 = 63.70, df = 14, p < 0.001). Swanwick Bend (SB) had significantly

higher abundance than Copperas (CO) (p = 0.002), PL (p = 0.003),

WB (p = 0.001) and WS (p = 0.001), while Itchen Bridge (IB) was also

higher than CO (p = 0.021), PL (p = 0.028), WB (p = 0.008) and WS

(p = 0.011). FEAS scores differed significantly across sites (χ2 = 80,

df = 14, p < 0.001), with EP higher than IB (p = 0.015), MF

(p = 0.001) and SB (p = 0.001), and PL higher than CH (p = 0.032),

GB (p = 0.025), IB (p = 0.006), MF (p < 0.001) and SB (p < 0.001).

4 | DISCUSSION

4.1 | Diversity and functional guilds

This study examined fish community composition, diversity and abun-

dance across 15 sites in the Solent over a 12-year period. A total of

55 species were recorded, highlighting a diversity level comparable to

other temperate, urbanised estuaries in the UK and Europe (Elliott

et al., 2007; Gibson et al., 2024). Although some regions, such as the

Severn Estuary and Bristol Channel, can support over 110 species,

Franco et al. (2008) reported an average of 53 ± 20 species across

38 European estuaries, suggesting that the Solent's diversity is consis-

tent with many degraded estuarine and coastal systems. Six species

F IGURE 5 Box plots comparing fish community metrics across season (autumn vs. summer; a–c) and tide (high vs. low; d–f). (a, d) Species
richness per survey. (b, e) Average fish abundance (mean number of individuals per survey). (c, f) Average Fish Estuarine Association Scores
(FEAS), where lower values (closer to 3) indicate a stronger estuarine association. Asterisks (*) indicate statistically significant differences
(p < 0.05). y-axes differ between panels.
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dominated the community, accounting for 96% of all individuals, and

were exclusively from the marine migrant (MM) and estuarine resident

(ES) functional guilds. This pattern aligns with previous findings that

estuarine fish communities are typically composed of a few abundant,

persistent species and support lower species richness than adjacent

marine systems (Magurran & Henderson, 2003; Martino &

Able, 2003). The use of functional guilds to classify species by

ecological role, behaviour and habitat use has proven effective in

understanding community dynamics and environmental responses

(Elliott et al., 2007; Garrison & Link, 2000; Lai et al., 2024; Mathieson

et al., 2000; Silva et al., 2022). In the Solent, the dominance of marine

migrants (82.3%) underscores strong ecological connectivity between

estuarine and coastal waters (Ferreira et al., 2019), consistent with

patterns in other Atlantic estuaries where marine migrants,

F IGURE 6 Non-metric multidimensional scaling (NMDS) plot showing site centroids of fish community composition across catchments from
2007 to 2018. Points represent median NMDS1 and NMDS2 values with error bars. Colours indicate catchments. NMDS stress = 0.201. CH,
Chichester Harbour; IoW, Isle of Wight; LH, Langstone Harbour; SW, Southampton Water.

F IGURE 7 (a) Box plots of species richness recorded in each catchment. (b) Average fish abundance across all years for the four catchments.
(c) Average Fish Estuarine Association Scores (FEAS), where FEAS values closer to three indicate a stronger association with estuarine habitats.
CH, Chichester Harbour (green); IoW, Isle of Wight (blue); LH, Langstone Harbour (red); SW, Southampton Water (yellow).
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catadromous, and estuarine residents dominate assemblages (Elliott

et al., 2007; Mathieson et al., 2000; Selleslagh & Amara, 2008). The

ecological dominance of marine migrants in the Solent also reflects its

role as a key transitional zone between coastal and estuarine environ-

ments. For example, D. labrax larval supply to the Solent originates

predominantly from spawning areas in the Channel (Graham

et al., 2023). Particle-tracking models have demonstrated that, despite

juvenile sea bass exhibiting strong site fidelity, dispersal among adja-

cent estuaries (often less than 50 km apart) creates a key link between

local nursery habitats and offshore populations (Graham et al., 2023).

Similarly, Atherina presbyter has been known to have a spawning loca-

tion in coastal algae beds near the entrance to Southampton Water

before moving into deeper offshore waters of the Solent

(Tubbs, 1999). This ontogenetic movement indicates that the estuary

supports early life stages and facilitates the mixing of populations that

contribute to Channel fish stocks.

The three most abundant taxa, A. presbyter (28.3%), Clupeidae

(28.1%) and D. labrax (21.4%), illustrate the functional diversity of the

Solent as a dynamic coastal ecosystem. A. presbyter is tolerant of vari-

able salinities and low oxygen conditions (Almeida et al., 2024; Lima

et al., 2024), which likely explains its widespread distribution despite

anthropogenic pressures. Members of the Clupeidae family, including

Clupea harengus, Sprattus sprattus and Sardina pilchardus, play a critical

role in trophic energy transfer as both predators and prey (Garrison &

Link, 2000; Peck et al., 2021). For instance, juvenile C. harengus and

S. sprattus display opportunistic feeding on copepods and benthic

invertebrate larvae, thereby facilitating energy flow across trophic

levels and between benthic and pelagic habitats (Maathuis

et al., 2024). As a highly mobile species, D. labrax links coastal and off-

shore environments through distinct life-stage movements. Telemetry

studies show juveniles often remain in nursery areas for up to 5 years

before moving offshore, while adults migrate seasonally between pro-

ductive inshore feeding zones and deeper offshore spawning and

overwintering habitats along the southern UK coastline (Pawson

et al., 1987, 2007; Pickett et al., 2004). In addition to its ecological

role, D. labrax is of high recreational and economic value (Dawson

et al., 2024; Fernández Sánchez et al., 2021; Tidbury et al., 2021;

Vandeputte et al., 2019), a status reflected in the designation of

extensive bass nursery areas protected by bylaws aimed at conserving

juvenile populations (MMO, 2023). These nursery habitats are vital

for providing shelter and foraging opportunities, and for enabling

migration to offshore environments, further strengthening the

broader ecological connectivity that supports commercial fisheries

(Freeman et al., 2024; James et al., 2019; Pawson et al., 2007; Stamp

et al., 2022). While the essential role of estuarine nursery habitats in

sustaining adult fish stocks is widely acknowledged, the quantitative

contribution of juveniles to coastal populations remains poorly under-

stood (Gillanders, 2005; Vasconcelos et al., 2011). This functional con-

nectivity is particularly critical for commercially important species

because deteriorating estuarine conditions can reduce juvenile sur-

vival, ultimately leading to declines in adult populations. This, in turn,

may disrupt trophic flow, ecosystem resilience and the sustainability

of regional fisheries (Ikpewe et al., 2021; Reis-Santos et al., 2013;

Simpson et al., 2011; Swadling et al., 2024; Thornborrow et al., 2024).

4.2 | Temporal changes in fish abundance and
community composition

Temporal analyses revealed a significant decline in fish abundance in

the Solent from 2007 to 2018, consistent with global patterns of

declining fish populations in degraded estuarine habitats (Belarmino

et al., 2021; Whitfield, 2017; Whitfield et al., 2018). Estuaries are

among the most degraded habitats globally (Jung et al., 2024), facing

sustained anthropogenic pressures such as habitat modification, pollu-

tion and climate change (Kennish, 2022, 2023; Kennish et al., 2024).

These stressors contribute to the decline of estuary-associated marine

fishes observed across regions (Whitfield, 2021), and the patterns

observed in the Solent mirror broader biodiversity loss in these critical

coastal systems (Lepage et al., 2022; O'Leary et al., 2021; Stamp

et al., 2022).

Our results also showed significant temporal variability in spe-

cies richness and community composition between summer and

autumn. Seasonal differences in community structure align with pre-

vious studies that report consistent seasonal shifts in estuarine fish

assemblages (Chen et al., 2022; Claridge et al., 2009; Hagan &

Able, 2003). For instance, Lee et al. (2014) found strong seasonal

contrasts using both gillnetting and environmental DNA (eDNA) in

estuarine environments, while Koutrakis et al. (2000) reported higher

richness and abundance during warmer months in the Rihios system.

These seasonal dynamics are likely driven by factors such as temper-

ature, recruitment pulses (Mir-Arguimbau et al., 2022) and prey

availability (Ouellet et al., 2025). Although temperature was not

directly measured, warmer sea surface temperature in autumn

(Cornes et al., 2023) are known to elevate metabolic demand

(Volkoff & Rønnestad, 2020), enhance recruitment (Lourenço

et al., 2023) and shift prey communities (Schoenebeck et al., 2024),

all of which can restructure fish assemblages (Colombano

et al., 2022; Guo et al., 2022; Lai et al., 2024). In species such as

D. labrax, recruitment success and larval supply are highly

temperature-dependent (Cabral et al., 2021), contributing to sea-

sonal changes in functional group abundance and trophic interac-

tions (Elliott et al., 2007). In addition, Vendel et al. (2003) observed

seasonal shifts in fish abundance, with fewer fishes being captured

during winter and part of spring. Furthermore, tidal state also influ-

enced community composition, with species richness being signifi-

cantly higher at low tide. Other studies, such as Gaelzer and Zalmon

(2008) and Morrison et al. (2002), also noted increased richness and

abundance at low tide, reinforcing the role of tidal exposure in struc-

turing fish communities. Gibson et al. (1996) documented intertidal

movements associated with rising tides, while Teather et al. (2012)

reported minimal differences between flood and ebb tides, highlight-

ing variability based on local context. In the Solent, the lack of signif-

icant differences in abundance and FEAS scores between high and

low tides suggests that although species identities shift, overall bio-

mass and functional roles remain relatively stable. Overall, these

results emphasise the importance of considering temporal shifts in

abundance, richness and functional guild composition across multiple

scales, annually, seasonally and daily, when assessing estuarine fish

populations.
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4.3 | Spatial differences between catchment
and sites

Fish community composition, abundance, and estuarine dependency

(as measured by FEAS) varied significantly across both catchments

and individual sites within the Solent. These patterns are consistent

with previous studies showing that estuarine fish assemblages are

shaped by both broad-scale gradients and fine-scale habitat features

(Elliott et al., 2007; Harrison & Whitfield, 2006; Maciel et al., 2024;

Martinho et al., 2012). For example, Goodridge Gaines et al. (2022)

found that spatial context, particularly proximity to estuary mouths,

intertidal flats and vegetated habitats, was more predictive of fish

abundance and diversity than habitat condition alone. Among the four

catchments, Southampton Water supported the highest fish abun-

dance and species richness, and the widest range of estuarine use

functional guilds. This likely reflects a combination of factors; the

catchment encompasses a variety of habitats (e.g. mudflats, saltmarsh,

shallow subtidal zones and artificial structures), includes the highest

number of survey sites and had the longest sampling duration. Cal-

shot, within this catchment, supported the greatest species richness

and five guilds, suggesting that local habitat diversity and ecological

connectivity can enhance the availability of niches for different

life-history strategies, supporting a more functionally balanced assem-

blage (Sreekanth et al., 2020). In contrast, nearby sites such as Crack-

nore Hard supported fewer guilds, highlighting substantial within-

catchment variation. Such patterns emphasise how nearshore and

juvenile fish respond to local features such as cover, food availability

and hydrodynamic conditions.

Despite its urbanisation, Southampton Water had significantly

lower FEAS scores compared to Chichester and Langstone Harbours,

indicating greater dominance by estuarine-dependent species, those

with FEAS values closer to 3.0. These taxa are functionally linked to

estuarine environments for critical stages of their life cycles and are

more vulnerable to habitat degradation (Harrison & Whitfield, 2021).

In contrast, Chichester Harbour, while less urbanised and containing

fewer surveyed sites, supported high species richness and multiple

estuarine-use guilds. Pilsey, located near extensive saltmarsh and

intertidal flats, had the second-highest species richness of all sites

despite reduced sampling coverage, underscoring the importance of

natural habitat quality and connectivity (Mosman et al., 2024; Van Lier

et al., 2018). The presence of dedicated management bodies such as

the Chichester Harbour Conservancy (CHC, 2024) and strong spatial

protections from IFCA byelaws (IFCA, 2024) may further contribute

to the biodiversity observed. In contrast, sites like Winner Bank, more

exposed and further from sheltered nursery areas, had the lowest

average abundance. This reflects broader findings that proximity to

sheltered, productive habitats such as creeks and vegetated flats

drives community structure and function in estuarine systems

(Bulleri & Chapman, 2010; Burt & Bartholomew, 2019; Clauzel &

Godet, 2020; Green et al., 2021; Nagelkerken et al., 2015).

At the site level, spatial heterogeneity was even more distinct.

Calshots' high richness and guild diversity likely reflect its proximity

to seagrass beds and relatively sheltered location, features known to

enhance nursery value and fish diversity (Janes et al., 2021; McHenry

et al., 2021; Unsworth et al., 2019). In contrast, sites such as Eastney

Point recorded the highest abundance but had higher FEAS scores,

indicating assemblages dominated by marine stragglers or species

with weaker estuarine reliance. This suggests that high abundance

does not necessarily equate to high functional estuarine importance

(Teichert et al., 2017). Swanwick Bend and Manor Farm Jetty, both of

which recorded FEAS scores closer to 3.0, were instead characterised

by stronger use from estuarine-dependent species. These intra-

catchment differences reinforce the idea that ecological value cannot

be assumed to be uniform within estuarine systems, even over small

spatial scales (Davis et al., 2020; Pessanha et al., 2021). Site-specific

habitat features such as sediment type, structural complexity and

exposure strongly influence both species composition and functional

roles (Kuang et al., 2021).

Notwithstanding the relatively compact scale of the Solent, the

spatial variation in abundance, richness and FEAS across its sites high-

lights the complexity of estuarine nursery function. Sites like Pilsey

and Calshot support a wider range of guilds or higher estuarine

dependency, making them especially important in terms of functional

biodiversity. These findings are consistent with other studies that

show the strongest nursery function often occurs where natural habi-

tats are well-connected and minimally disturbed (Gittman et al., 2016;

James et al., 2019; Sagerman et al., 2019). Conversely, degraded or

fragmented habitats may still support fish, but with reduced diversity

and diminished estuarine functional value (Vasconcelos et al., 2011).

Incorporating FEAS alongside traditional metrics such as abundance

and species richness offers a powerful framework for interpreting spa-

tial variability in estuarine function (Harrison & Whitfield, 2021).

While richness and abundance reflect diversity and productivity, FEAS

captures the degree to which sites are relied on by estuarine-

dependent species. By combining FEAS with functional guild analysis,

this study provides a multidimensional perspective on estuarine use,

enhancing our ability to evaluate habitat quality and ecological value

across space using historical data.

4.4 | Implications and recommendations for
restoration and management

Effective estuarine management depends on a clear understanding

of fish community structure, function and habitat use. By integrating

species richness, abundance, functional guilds (EUFG) and estuarine

dependency (FEAS), this study provides a detailed assessment of

ecological variation across the Solent. Together, these metrics offer

a useful framework for identifying sites that support key life stages

of estuarine-associated fish and for interpreting how fish communi-

ties respond to spatial and temporal change. The dataset provides an

important ecological baseline at a time when large-scale marine res-

toration is already underway in the region (BMF, 2024). Capturing

pre-restoration conditions is crucial to evaluating future change,

helping to distinguish genuine ecological recovery from natural

variability.
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Measuring the success of restoration projects is often challenging,

particularly in dynamic systems like estuaries. Projects are frequently

constrained by short funding cycles, limited spatial coverage or miss-

ing baseline data (Basconi et al., 2020; Bayraktarov et al., 2016; Cooke

et al., 2019; Danovaro et al., 2021). These constraints are com-

pounded in systems where long-term ecological change has already

occurred, making it difficult to define meaningful reference conditions

(Alleway et al., 2023; Pauly, 1995). Without sustained monitoring

across multiple sites, there is a risk of attributing natural fluctuations

to restoration efforts. Recognising and accounting for this spatial and

temporal complexity is therefore essential for setting realistic goals

and for interpreting change with confidence (England et al., 2021;

Schulz et al., 2020).

While seine nets remain a practical method for monitoring near-

shore fish, they can be limited in complex or vegetated habitats and

are labour-intensive (NECR 271, 2020; Bayley & Herendeen, 2000).

Looking ahead, incorporating complementary approaches such as bai-

ted remote underwater videos, fyke nets, standard monitoring units

for the recruitment of fishes, eDNA and drop-down cameras can

improve species detection, habitat coverage and overall survey resolu-

tion (DiBattista et al., 2022; French et al., 2021). These methods,

especially when linked to environmental variables like temperature,

salinity or oxygen, enhance our understanding of what drives fish dis-

tribution and habitat use. However, historical data often lack these

contextual details, particularly in multi-agency datasets. In this con-

text, applying retrospective functional metrics such as FEAS and

estuarine-use guilds offers a powerful way to infer ecological function

and build a meaningful baseline from what data are available. This

approach helps overcome the limitations of older survey methods and

provides a structured basis for guiding conservation priorities, restora-

tion planning and management decisions.

The results also support a more targeted approach to habitat

management. Sites where fish assemblages are dominated by species

with FEAS scores close to 3.0 are likely to have the greatest estuarine

functional importance. These are the species that depend on estuaries

for feeding, shelter and growth, and are most vulnerable to degrada-

tion (Harrison & Whitfield, 2021). Prioritising such sites for conserva-

tion and restoration will help safeguard nursery function and maintain

fish populations over the long term. Conversely, sites with higher

FEAS scores, typically dominated by more transient marine species,

may be less functionally dependent on estuarine conditions and could

require less intensive management. Incorporating FEAS and functional

guild data into restoration planning also offers a way to identify eco-

logically valuable areas that might not be apparent from diversity or

abundance data alone. Based on the key patterns observed in this

study, several practical recommendations for estuarine monitoring

design are summarised in Table 2.

As highlighted in Table 2, designing effective monitoring

frameworks requires accounting for spatial heterogeneity and

functional connectivity across catchments. Spatial variation within

the Solent further highlights the importance of connectivity.

Estuarine-dependent species rely on a mosaic of linked habitats,

from intertidal flats to subtidal zones and nearshore reefs to com-

plete their life cycles (Graham et al., 2023; Nagelkerken

et al., 2015). Maintaining access to these habitats, and ensuring

that movement pathways remain intact, should be a key focus of

any future restoration efforts. Sites that support multiple func-

tional guilds may also offer greater ecological resilience, helping

buffer fish communities against disturbance or environmental

change (Sreekanth et al., 2020).

Finally, this study recorded a decline in fish abundance and

changes in community composition between 2007 and 2018. These

findings point to wider ecological changes underway in the Solent and

underline the urgency of reversing habitat degradation. Establishing

clear ecological baselines is vital not only to set realistic restoration

goals, but also to ensure that any observed recovery can be confi-

dently linked to management interventions. Long-term monitoring,

combined with functional assessments like FEAS, offers a practical

TABLE 2 Priority monitoring recommendations for temperate estuarine fish assemblages based on this study's findings.

Priority Recommendation Rationale Application/benefit

1 Maintain long-term, multi-

site monitoring across all

catchments

Captures spatial variability; essential for detecting

real change vs. natural fluctuations

Supports site-specific restoration planning and

reduces risk of false inferences

2 Prioritise autumn sampling Higher richness and functional diversity in autumn

makes it most efficient for detecting estuarine-

associated species

If only one season is feasible, choose autumn.

Increases detection of key nursery species,

improving habitat valuation

3 Include both high and low

tide sampling

Tidal state significantly influenced community

composition and richness

Enhances understanding of habitat use across tidal

cycles

4 Ensure seasonal replication

(at least summer and

autumn)

Community composition shifts seasonally; some

functional groups appear only in one season

Captures full seasonal turnover in community and

functional structure; important if assessing change

over time

5 Balance catchment

coverage and effort

Uneven sampling may bias comparisons and reduce

representativeness

Ensures fair comparison and prioritisation across

management units

Note: Recommendations are ranked by importance under typical logistical constraints (e.g. time, funding, access) and reflect key patterns in spatial and

temporal variability in fish community structure, richness, abundance and estuarine dependency. This framework supports the design of efficient,

evidence-based monitoring strategies to inform restoration and management in other temperate estuarine systems.
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way to track restoration outcomes and support more adaptive,

evidence-based management of estuarine systems.
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